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MORE ON A CLASS OF OPTIMAL SEARCH PROBLEMS

Warren W Willman

Operations Research Branch
Mathematics and Infonnation Sciences Division

Abstract: Optimal strategics are investigated for a class of one-dimensional search processes in
which the objective is to find a point which 1s near, but not beyond, a boundary of uncertain location.
Problems of this type arc encountered ‘n the analysis of mining operations, Upper and lower bounds
for the optimal expected payoff are derived, and the optimal search strategies are described
explicitly for a large sub:lass of these processes. Results are obtained by formulating the search as
a multistage decision process and using a dyramic programming approach.

INTRODUCTION

Optimal policies are investigated here for a class of one-dimensional adaptive search processes in
which the objective 1s to find a point which is near, but not beyond, a boundary of uncertain location.
This class is an extension of a class of similar search processes examined previously by the author (1).
Aside from theoreiical considerations, this extension is important because of its applications to certain
mining operations. These problems share some features of those studied by Derman and Ignall (2), but
are basically different because the main question here is where to search, not when to stop. They are
also basically different from the classical search problem described in Koopman (3), where the objective
is to locate a smnall object, at least approximately, within a large planar region of uncertuinty, The only
applications of the results of this report to planar searches would be to the location of the boundary of
a large planar region, where the uncertainty of the boundary location is small compared to the size of
the region. The results here are obtained by formulating the search as a multistage decision process and
using a dynamic programming approach.

A SEARCH PROBLEM
The search process cornsidered here proceeds sequentially. At epoch i (i=0,1,...) a searcher has
the choice of terminating the search or selecting the median m; of a random variable y; whose distribu-
tion is rectangular with width 7 3 0. The term m; represents the desired search point, whereas y; is the
actual scarch location, which is unknown to the searcher. The random variables (y; — m;) are statisti-
cally independent, but each has the same distribution width 7.
If the search is terminated at epoch N 2 0, the searcher receives a return J such that
0 , f N=0
Gyy)-N, if N>O0

NRL Problem B01-10; Project RR0030241-6152, This is a final seport on one phase of the problem. Work on other
phases of this problem is continuing. Manuscript submitted August 18, 1972,
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2 WARREN W, WILLMAN

where
a+kx, if x<b
G(x) =
0 , if x>b.

Also, k > u,a > 2 + (1/3k), and b is a random variable with a symmetric trapezoidal probabiliiy den-
sity of the class shown in Fig. 1 such that the lower and upper midpoints are 0 and sg, respectively,

—— e . — —— —

2\t e
2\h-¢

_J-_

1 h
(lower midpoint) {upper midpoint)

Fig. 1 - A classof symmetric trapezoidal probability densities b. The quantity T > 0 is the distribution
width of the random variables y.

where so > Tana T < 1/3k. Also, b 1s statistically independent of the y’s. The quantity G represents
the gain from the search. The cost of a single search step has been taken as unity, without loss of
generality. The random variable b represents a random boundary location. A rectangular density fos

b on the interval [0,s9]) would serve equally well here, but that would entail more complicated formulae
in the following analysis.

At decision time , the searcher knows the values of sq, T, k, 4, i, and, for alij < i, the search
decisions m; and the corresponding valucs of sgn(b — y;). This last sequence of values represents a
knowledg= of the side of the boundary b on which the previous actual search locations were, The
problem investigated in this report is that of finding search policies which maximize the (prior) expected
value of the return J. As usual, a policy, or strategy, is defined as a decision rule which determinss the
searcher’s action as a function of the information available to him, for any possibie realization of he
search process, and for whir'' the search termunates with a probability equal to 1. This search is adapt-
ive in the sense that the searciier’s actions depend ~n previous search results,

The search problem treated here is a modification of one studied in a previous work by the
present authot (1), it differs in only two details. In the previous work @ = 0, and the value of the
return J is
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sup G(yy)

<N
if N > 0. The present modifications make the search process a more accurate approximation to certain
kinds of searches actually conducted in mining operations. Because of its similarity, however, much of

the analysis of the previous provlem can be carried over to this one. The results are also of a similar
sort and will be compated with those obtained for the other search problem at the end of this report.

ANOTHER FORMULATION

It is convenient at this point to define the following four sequences of random variables:

ki = min{so} Uimyp; > b, j < i}
g = max {0} U{mpy; < b, j < i}
N = max {0} U{yy < b, j < i}
2 = -]i- + -i;-sgn(b-y,); i=0,1,...; z) = C:

where

sgn(0) 4.
It is immediately apparent that there is always a better alternative than choosing m; outside the interval
(& — T, hi+T]. Search policies for which such a choice is possible will not be considered further. In
addition, we temporarily admit only policies for which m; is always in the interval [2;+(1/3k),
hi—(1/3k)] if h;—Q; > 4/k.

It can be shown by induction that it 1s possible to express the return as

2

J=) [a-z4) + k(pizm-21-z)zi4) - 1,

1]
(=]

where N is the epoch at which termination occurs. This alternative expression for the return makes the
search process amenable to a dynamic programming analysis. The boundary location b, and the quan-
tities A; and z;_) serve as the state variables at epoch i in this analysis; the intended search points m;
are the control variables and the search “results” z; are noisy measurements of the state. The b compo-
nent of the state is static; the z;) component is known exactly,

STATE ESTIMATION

The temporary policy restriction easures that the points 0, sg, and the m’s are all separated by a
distance of at least T as long as Ay — ¢; 3 4/k. By using this fact and the statistical independence of
the random variables (y;—m;), the nsual inductive use of the Bayes Rule shows that the posterior
probability density of b at epocii i (given the data available to the searcher at that time) is also a

symmetric trapezoidal density of the class previously shown in F\ig. 1, whenever this condition is
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satisfied. The upper and lower midpoints of this conditional density are h; and 2;, respectively. The
conditional J2nsity of A;, given b and the data at epoch i, is also determined hy the posterior distribu-
tion of b unuor these circumstances, namely by the parameter £;. Since the state variable z;_ is known
exactly fro.: the data at epcch i, it follows that &;, €;, and z,..; are sufficient statistics for the joint
conditional distribution of the state variables for the portion of the search where b; — €; 2 4fk. Itis
important to note that these estimation results depend on the fact that, for any i 2 j = 0, the relation
hi - %; > 4/k = h; — &; > 4k, which is an immediate consequence of the definitions of A; and &;.

THE YALUE FUNCTION

Let U be the class of search policies which satisfy the temporary restriction imposed previously
and for which the functional dependence of the action at epoch i on the available data is determined
uniquely by the statistics 4;, €;, and z;_; for all i such that /; — &; 3 4/k. Since the joint conditional
distribution of the state variables is also determined by these statistics in this case, and since the values
of (y;—m;) are statistically independent, the following definition is unambiguous for such a policy.

Definition: Forh — (4/k) = £ > 0,z = 0 or 1, and nell, the quantity L (i,%,h,z,n) is detined
as the conditional expected future return at epoch i from policy n given that 8; = €, h; = h, and
Z;-1 = z, where the future return at epoch i is the total return minus the return that would result from
termynating the search at that epoch.

For nell, the notation n(i,%, 4,2) is used to denote the action specified by m at epoch i for
Q; =&, h; = h, and z;; = z. The value functior is now defined as:

Definition:

G, h) = sup L{i,%,h,1,7)
ne
for h-(4/ky > 220; i =0,1,....
R@,%h) = sup L(i,2,h,0,7)

ne

The value function is defined in terms of the two partial functions Q and R for conceptual convenience.
Intuitively, Q is the optimal expected future return if the last search point was below the boundary,
and R is the optimal expected future return if it was above the boundary.

The results of Stratonovich (4) imply ihat the conditional expected future return for an optimal
policy at a given epoch of any realization is determined by the condition:z! probability distribution of
the state under those conditions. Therefore, this value function is the supremum of the conditional
expected future returns for all search policies satisfying the restriction imposed in an eatlier section
titled “Another Formulation™ (for the domain of definition of this function). in particular, it is the
optimal value function in the sense of Beliman {5) if optimal policies exist within this restricted set
of policies. Furthermore, it will be shown later that no optimal policies are exciuded by this restriction,
so this value function has these poperties with respect to the class of all admissible search policies.

The situation is more complicated if #; — 2; < 4/k because the statistics #;, &, and z;_; are in
general no longer sufficient to determine the conditional probability distribution of the state variables,
This case will be treated separately.

Py
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THE BELLMAN EQUATION

For nell and h — (4/k) > 2 > 0, the additive expression for J and the statistical independence of
the (y;—m;)’s imply the recursion

fG,%hz,mmy, if =#@i,%Akz2) = “search at m”

L(i,%h,z,m) =
0 , if  w(i,%,h,2) = “terminate seaich”

where

. A \
FG,h,z,m,m) £ Ejgag {LG+ 1,851, he1,2,m) + a(z=2i1) + k(pizi =N (1~ 2) 21y ) = 1}
h,=h
2;-1=Z
mE=m

Repeating the manipulations performed in Ref. 1, it follows from the Principle of Optimaiity deveioped
by Bellman (5) that the value furction satisfies the equations (together constituting the Bellman
equation)

0,

Q(i,2,h) = max h-m
sup {—__—Q— k(m=9) + Q(i+1,m,h))

2+(1/3k)<m<h-(1/3k) h

m-2 . _
+ 57 [RG+1,8m)~a 133

o k2
12(6-%)

R(i,0,k) = sup {’i{%tk(m—n) + Qi+ 1,m, k)]
+(1/3k)<m <h-(1/3k)

m-2 ; 0N —~g -
+ h=T [R(i+1,m, ~a~-kQ]

+ta+k-

T
201

for h=(4/k) 2 2 > 0. The reason that R cannot be zero is that searching at m = 1/3k, then at
m ==1/3k (guaranteeing that zj+; = 1), is always preferable to terminating the search at epoch i if
zj.y = 0 because a > 2 + (1/3k). From these two equatiogs, it follows ihat
Q@i h) = max{O,R(i,Lh)—a—kQ} m

in this range of 2 and h.

P P S 3 P b . | L_“L‘ A
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ADDITIONAL PROPERTIES OF THE OPTIMAL VALUE FUNCTION

The next step here is to establish some additional properties of the partial value function @ which
will e useful in the analysis of this search problem. These properties are proved in this section as a
series of lemmata, In the context of this entire section, Q is the partial value function as defined in an
earlier section titled “The Value Function”, and not any other solution to the Beliman equation, if such
exist.

LEMMA L. h~0=4/k= Q@ %h) = 0.

Proof. For any admissible policy and any realization of the random variables of the search process,
the future return at any epoch i, such that z;_) = 1 and i — &; > 4/k, is bounded above by the future
return from this policy in the search process analyzed in Ref. 1 with the same values of sg, T, k, and i,
because the future return is the same if zy = 1 and exceeds the future return of the present process by

a if zy = 0. Since every policy which is admissible here is also admissible in this other search process,
and since the optimal expected future return is zero in the other process if #; — &; = 4/k, the lemma is ﬁ
verified.

LEMMA 2. 2(i, % h) is monotonic in (h—2).

Proof. Suppose that h—Q > 4/k is increased by a factor ¢ > 1 for some value of i, If the prob-
lem is changed so that the value of 7 is also increased by this factor, the remainder of the search process
at epoch ¢ for the corresponding realization is merely scaled up by the same factor. Thus, for any
policy mel{ in the original problem giving conditional expected future return: M at this point, the scaled-up
policy (such that cm; always replaces m;) 1s admissible in the scaled-up problem and gives a return
greater than M for each realization, and hence a greater conditional expected future return at the cor-
responding point. Therefore,

03,2 h) < Qy(i, R, ch)
where () is tr.e corresponding partial value function for the scaled-up search problem. Finally, rince an
increase of T is a degradation of search data, it can never increase the supremum of a conditional ex-
pected future return, so that
Q1(i,c%ch) < Q(i,cl,ch).
Definition: s* = infls:3i,h,83 s=h -2 and Q3,8,k) > 0} .
LEMMA 3. Qri, 8, 2+s*) = 0.

Proof. If s* = 4k, this is true by Lemma 1;if not, s* > 4/k. In this case, assuzae that Q(i,2,2+5%)
=g > 0. Let m* e[+ (1/3k), 2+s*—(1/3k)] be such that

kT2 _
125*

k m* -9 , g
- (Q+s*~m*)(m*-9) + = [R(i+1,,m")—a—k8] - 1 >—2—-

Such an m* exists by virtue of the Bellman equation and Lemma 1. It also follows from Lemma 1 that
for any € such that 0 < e < s* - 4/k,
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*_ . _ *
(Q+s m-—f>k(m*—2)+(m*

-2\ o . kT?
+ —_—F - -— ———— —_
- — )[R(z 1,8,m*) - a— k2l ( ) 1

12(s*~¢)

<Q(i,2,0+s*~€) = 0.

From the definition of m™*, however, this is impossible for sufficiently small ¢ because all of the terms
in the large parenthesis are continuous functions of €.

LEMMA 4. Qi 0, 2+s) depends only on s.

Proof. Lemmata 1 to 3 imply that Q satisfies the following modified Bellman equation:

- kT2 S=U ..
Q. 2,h) = sup 1(5)[u (ku - oo— ) - 1] CIG) T QG+ 1,%+u,0+s)
1/3k<u<s-(1/3k){ s 12(s—u) s

+l(s)%Q(i+l,Q,Q+u)}

0, for s<s*
1) &
1, for s>s*
and where u = m — 2. Since Q(i,2,2) = 0 by Lemma 1, Q(i,2,2+5s) must depend only on s to avoid a
contradiction,

where

A SIMPLIFICATION

By Lemma 4, the following definition is unambiguous:

Definition:

Q@,2,04s), for s=4/k
v(s) &
0 , for 0<s<dfk.

Also, by thie proof of Lemma 4, V satisfies the equation and boundary condition given by

_ s—u [, _ kT2 Y\ _ S=u o u
Ve = l/3k<us:§)—(l/3k){l(8)|: $ (ku 12(3"“)) lJ”(S) s V(u)}(z)
and
V() = 0
where
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0, for s<s*
I(s) CY

I, for s>s*.

LEMMA 5. There exists a unique solution V to Eq. 2.

Proof. By an extension of Theorem 1 in Chapter IV of Bellman’s book (5), there exists one and
only one solution V to this equation such that ¥{0) = 0 and V(s) is continuous at s = 0. Since all solu-
tions clearly have these two properties, the lemma follows,

The problem of finding the partial value function Q has now been simplified to finding s* and
finding a solution to Eq. 2. The following resuit is helpful in determining s*:

LEMMA 6. s*=sup{s>0:R(0,0,s) <al.
Proof. By iemma 4 and Eq. 1,
Q(i,%,h) = Q(0,0,s) = max{ 0,R(0,0,h ) — a} .
Therefore,
Q(i,2,h) >0«R(0,0,5)—a>0 and s=h-2,
By definition,
s*=infis >03i,Qh 3s=h-2 and Q(i, k) >0}.
Hence,
s*=infls>0:3i,Qh 3s=h—-2 and R(0,0,5)>a}
= inf{s > 0:R(0,0,5) >a}
= sup{s 2 0:R(0,0,s)< al,

since termination is nonoptimal, Q(i,2,4) is r “onotonic in (h—8),and R = Q when Q = 0.

OPTIMAL POLICIES

The simplified Bellman Eq. 2 is exactly the same as the one derived for the search process studied
in Ref. 1, except that the parameter s* here replaces spmin there. The results there, and the fact that
' 0 =R for Q » 0, imply the following results for mel{ (this policy restriction is shown to be superfluous
in the next section):
a. If z;; = 1 at epoch i, it is optimal to continue the search if and only if §; > s*.

b. It is always optimal to continue the search at epoch i if z;; = 0.

c. If se[2r-1s* 275*),n=0,1,2,...,
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then

o) 2k (s 2 s 272 L2 PR g B O | A N F AV
V(S)—2(5+6S T 65) n<V(s)<2(s S+l long._ )

where

2
’ 2
-2 loge (‘_sz_) LT

k k 6
d. V*(s) = V(s) < V*(s®) for s 3 5*/2.
e V) = V() = VQAs)forn=0,1,2,....
f. The policy 7, where m; = (h;/2) + (%;/2), is optimal if sg =2"§,n=1,2, ..., and h; — &; > s*.
g. Cases exist where i — €; > s® and my; = (B;/2) + (£;/2) are not optimal.
Furthermore, if T = 0 the conditional probability density of b given the search results is rectangular for
any policy in I, so the Bellman equation can be extended to entire search process. It is then straight-

forward, but tedious, to show by direct substitution in the Bellman equation that the policy

(0 , if 0<g<1fk

u,={§—§ ,if 1k <s <3k

L% - Uk, if 3k <g<(3+VER
is optimal for s; < s* and, by Lemma 6, that s* = (3 ++/6)/k in this case. If T> 0 it is possible that
admissible policies lead to posterior probability distributions for b which are not symmetric trapezoidal;
so s* and optimal policies for s < s* cannot be found in this way. Since an increase of T from zero to
a positive value represents a degradation of information, however, the quantity (3 +/6)/k is a lower
bound for s* in this case. An upper bound can be established by evaluating the expected return from
the admissible but nonoptimal policy

(-T , if -T<k-4 <1k
=S L or i k<2< 3k
1 2 2k ) H i
) 2 1 .
'3—31—'17"7', if 3/k<h-%<6/k.

.

It is not important to evaluate this return exactly; it is positive if

346 7
% ‘f—(;-kT.

!
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Hence, the results about s* obtained here can be summarized as ° ) ' '

REMOVAL OF POLICY RESTRICTION

The analysis in this report has heretofore been based on a restriction of admissible search policies
to those for which my e [Q;+ 1/3k, h;—1/3k] always. It is the purpose of the present section to show
that this restriction, although convenient for analytical reasons, is superfluous with regard to optimal
policies. In particular, 1t is shown that for any policy not satisfying this restriction there is a policy that
does, and one which gives an exper +:d return at least as great. Consequently, the results pertaining to
optimal search policies in this report can be regarded as applying to all search policies without restriction.

LEMMA 7. If s; > 4/k and T < 1/3k for any epoch i, it is not optimdl to choose m; such that m;
€[R;+(1/3k), hi—(1/3k)]. \

Proof. Assuming the contrary, the Principle of Optimality (5) implies the existence of a case
where so > 4/k, T < 1/3k, a policy, and a realization of the search process such that m; < £;+ 1/3k, or
m; > hj—1/3k, for some epoch j, and such that this policy’s conditional expected future return at that
point is greater thar that of any policy which terminates then or for which & +i/3k € m; < hj~ 1/3k.
Let the variable triple (sg, T,k) be fixed such that this possibility, exists and let A be the set of all such
triples with this property. Define.the set B as

B={x>4/k: (x.T.k) € A} . o

Let o be an element of B such that ¢ < infB+ 1/3k, and let II denote arl admissible policy for which the
possibility described above exists for the triple (0, T, k), the existence of which is guaranteed by the

construction of 6. Consider the corresponding search process and realization and denote by i the first

epoch for which m; < 2;+ 1/3k or my > h;—1/3k. For convenience, denote h;—8; by §; and r1;~&;

by u;. All probabilities and expectatio's in the following computauons are meant to be conditioned on .
the data available to the searcher at epoch i. ! '

Since &+ T < ;i +1/3k <mj; < hy— 1/3k < hj—T for all j <, the conditional density of b at
epoch i is symmetric trapezoidal with upper and lower midpoints at k; and Q; By construction, ,
s; 2 4/k > 12T. ' ‘

Case 1: m; <%;+1/3k. In this case, the searcher’s conditional expected future return is not :
decreased by giving him free knowledge at epoch i+1 of the random variable (1/2)-(1/2)sgn(b ~a +{),
where o =max (1/3k,u; +1/3k) and { is a random variable independent of b and the y’s with rectangular den~ -
sity of median zero and width T, and allowing him to proceed optimally with this extra knowledge. At
this point (epoch i+1) the conditional density of b is symmetric trapezoidal by construction with mid-
points Icss than inf(B) apart. Hence, the optimal expected future return is given by the Bellman equa- ' }
tion for policies in U. Some tedious computations similar to those in Ref. 1 then show that the condi- )
tional expected future return from policy I at epoch i in this case is less than or equal to

a-1+k(a+T)+ 03,2 +a,h))

if zi_1 =0, ano

-1 +k(@+T)+ QG 8 +a,hy)

aa = =
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if 2y = 1. Since Q(i,%,k) is monotonic in h—% and is greater than or equal to R (i, %, k), either of
these possibilities implies that

0< —1+k(a+T-9) < kT - 113,
contradicting the original assumption.
Case 2: m; > h;—1/3k. The proof in this case is similar, except that the “free” extra information

given to the searcher at epoach i+ 1 is the random variable (1/2) — (1/2) sgn(b—8+3%), where § =min
(hy— 1/3k, by, ~u;—1/3k).

DISCUSSION

‘As was mentioned in the section titled “Another Formulation,” the search problem investigated 1n
this report is similar to the one described in Ref. 1. The main differences in the results here are the
inclusion of a new state variable z;—; in the formulation of the search as an optimal control problem, a
new stopping rule, the searching strategy for s; <s* and the difficulty in finding the value of s* (which
corresponds t0 Spip in the previous problem) for T # 0. If s > s*, the optimal expected return in this
search process is a + V(sg), where V' is defined by E3. 2. Although this function is slightly different
from the function called ¥ in Ref. 1, it has many similar properties (see section titled “Optimal Policies™)
and obeys the same equation, except that s* # smjn. It is for this reason that the certainty-equivalent
policy 7~ is optimal for s; = 2% in this search process, as well as in the one investigated in Ref. 1.
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